
Python’s Guide to the Galaxy
Tom Ron

Swiss Python Summit
February 2016

Tom Ron
- Senior Data Scientist @ Magic Internet
- Geek
- Python Developer
- Mostly Harmless

https://github.com/tomron/python_swiss_2016

https://github.com/tomron/python_swiss_2016
https://github.com/tomron/python_swiss_2016

Agenda - trilogy in 4 parts
● Data Structures -collections, itertools
● Dates - time, datetime
● Text - string, unicode, re
● And more

Data Structures

namedtuple() factory function for creating tuple subclasses
with named fields

New in version 2.6.

deque list-like container with fast appends and pops
on either end

New in version 2.4.

Counter dict subclass for counting hashable objects New in version 2.7.

OrderedDict dict subclass that remembers the order
entries were added

New in version 2.7.

defaultdict dict subclass that calls a factory function to
supply missing values

New in version 2.5.

Collections

https://docs.python.org/2/library/collections.html#collections.namedtuple
https://docs.python.org/2/library/collections.html#collections.namedtuple
https://docs.python.org/2/library/collections.html#collections.deque
https://docs.python.org/2/library/collections.html#collections.deque
https://docs.python.org/2/library/collections.html#collections.Counter
https://docs.python.org/2/library/collections.html#collections.Counter
https://docs.python.org/2/library/collections.html#collections.OrderedDict
https://docs.python.org/2/library/collections.html#collections.OrderedDict
https://docs.python.org/2/library/collections.html#collections.defaultdict
https://docs.python.org/2/library/collections.html#collections.defaultdict

collections
d = {}
d[42] += 1

KeyError: 42

from collections
import Counter

d = Counter()
d[42] += 1

Counter({42: 1})

from collections import
defaultdict

d = defaultdict(int)
d[42] += 1

defaultdict(<type 'int'>, {42: 1})

collections
d = {1 : 20}
e = {1 : 22}
d + e

TypeError: unsupported
operand type(s) for +: 'dict'
and 'dict'

from collections import
Counter

d = Counter({1 : 20})
e = Counter({1 : 22})
d + e

Counter({1: 42})

iterating
books = ["The Hitchhiker's Guide to the Galaxy",
"The Restaurant at the End of the Universe",
"Life, the Universe and Everything",
"So Long, and Thanks for All the Fish",
"Mostly Harmless", "And Another Thing..."]

for index, book in enumerate(books, 1):
print "\"%s\" is the %s book"%(book, index)

"The Hitchhiker's Guide to the Galaxy" is the 1 book

"The Restaurant at the End of the Universe" is the 2 book

"Life, the Universe and Everything" is the 3 book

iterating
publish_years = [1979, 1980, 1982, 1984, 1992, 2009]

for book, year in zip(books, publish_years):
 print "%s was published in %s"%(book, year)

The Hitchhiker's Guide to the Galaxy was published in 1979

The Restaurant at the End of the Universe was published in 1980

Life, the Universe and Everything was published in 1982

itertools
Infinite iterators count, cycle, repeat

Iterators terminating on the
shortest input sequence

chain, compress, dropwhile, groupby, ifilter, ifilterfalse,
islice, imap, startmap, tee, takewhile, izip, iziplongest

Combinatoric generators product, permutations, combinations,
combinations_with_replacement

itertools
from itertools import takewhile
books_publish_year = zip(books, publish_years)

All books published before 1900
Assuming books are sorted

books_before_1990 = takewhile(lambda (book, year): year <
1990, books_publish_year)

[The Hitchhiker's Guide to the Galaxy, The Restaurant at the End of the Universe,
Life, the Universe and Everything, So Long, and Thanks for All the Fish]

itertools
Taking 2 books for to read on my vacation

from itertools import combinations

for book1, book2 in combinations(books, 2):
print "\"%s\"\t\"%s\""%(book1, book2)

"The Hitchhiker's Guide to the Galaxy" "The Restaurant at the End of the Universe"
"The Hitchhiker's Guide to the Galaxy" "Life, the Universe and Everything"
"The Hitchhiker's Guide to the Galaxy" "So Long, and Thanks for All the Fish"
"The Hitchhiker's Guide to the Galaxy" "Mostly Harmless"
"The Hitchhiker's Guide to the Galaxy" "And Another Thing..."
"The Restaurant at the End of the Universe""Life, the Universe and Everything"
...

itertools
But which one should I read first?

from itertools import permutations

for book1, book2 in permutations(books, 2):
print "\"%s\"\t\"%s\""%(book1, book2)

itertools
group by - books by decades

from itertools import groupby

for decade, gr in groupby(books_publish_year, lambda x:
10*(x[1]/10)):

print decade, ";".join(["\"%s\""%(g[0]) for g in gr])

1970 "The Hitchhiker's Guide to the Galaxy"
1980 "The Restaurant at the End of the Universe";"Life, the Universe and
Everything";"So Long, and Thanks for All the Fish"
1990 "Mostly Harmless"
2000 "And Another Thing..."

Dates
time - Time access and conversions

datetime - Basic date and time types, dates manipulations

calendar — General calendar-related functions

https://docs.python.org/2/library/time.html
https://docs.python.org/2/library/time.html
https://docs.python.org/2/library/datetime.html
https://docs.python.org/2/library/datetime.html
https://docs.python.org/2/library/calendar.html
https://docs.python.org/2/library/calendar.html

Datetime
from datetime import datetime

from string
my_time = '2016-02-05 09:37:11'
d = datetime.strptime(my_time, "%Y-%m-%d %H:%M:%S")

datetime.datetime(2016, 2, 5, 9, 37, 11)

to string
d.strftime("%Y-%B-%d %H:%M:%S")

2016-February-05 09:37:11

Datetime
from datetime import timedelta

delta = timedelta(hours=1)
time_in_1_hour = now + delta

print now
2016-01-31 17:07:03.080847

print time_in_1_hour
2016-01-31 18:07:03.080847

Datetime
and_now = datetime.now()

who much time passed?
time_diff = and_now - now

print "time_diff: %s"%time_diff

time_diff: 0:00:00.000088

print "time_diff.seconds: %s" %time_diff.seconds

time_diff.seconds: 0

print "time_diff.total_seconds: %s"%time_diff.total_seconds()
time_diff.total_seconds: 8.8e-05

Datetime
tomorrow = now + timedelta(days=1)
time_diff_tomorrow = tomorrow - now

print "time_diff_tomorrow: %s"%time_diff_tomorrow
time_diff_tomorrow: 1 day, 0:00:00

print "time_diff_tomorrow.seconds: %s"%time_diff_tomorrow.seconds
time_diff_tomorrow.seconds: 0

print "time_diff_tomorrow.total_seconds: %s"%time_diff_tomorrow.
total_seconds()
time_diff_tomorrow.total_seconds: 86400.0

Text
print 'zürich'

SyntaxError: Non-ASCII
character '\xc3'

-*- coding: utf-8 -*-

print 'zürich'

zürich

Text
● string - plain sequence of bytes, default ASCII
● unicode - , str := unicode in Python 3

Text
-*- coding: utf-8 -*-

len('ü')

len(u'ü')

len(u'ü'.encode('utf-8'))

len(u'ü'.encode('latin1')

2

1

2

1

RE
import re

sentence = "\"The Hitchhiker's Guide to the Galaxy\" was published in
1979"

regex = "\"([\w ']+)\" was published in (\S+)"

re.findall(regex,
sentence)

[("The Hitchhiker's Guide to the Galaxy", '1979')]

RE
match1 = re.match(regex, sentence)

match1.groups()

match1.span(1)

match1.group(1)

("The Hitchhiker's Guide to the Galaxy", '1979')

(1, 37)

The Hitchhiker's Guide to the Galaxy

match1.groupdict() {}

RE
match2 = re.search("\"(?P<book>[\w ']+)\" was published in (?
P<year>\S+)", sentence)

match2.groups()

match2.groups()

match2.groupdict()

match2.span(1)

("The Hitchhiker's Guide to the Galaxy", '1979')

(1, 37)

The Hitchhiker's Guide to the Galaxy

{'book': "The Hitchhiker's Guide to the Galaxy", 'year':
'1979'}

And..
- Reading data from web (urllib, urllib2)
- Async
- Profiling
- More about text

So long, as Thanks
for All the Fish

